You are here


  1. G. Frankel, 2017, WastePD, An Innovative Center on Materials Degradation, npj Materials Degradation, 1(1), 1-2 [DOI: 10.1038/s41529-017-0002-5].

  2. P.K. Kulriya, T. Yao, S. M. Scott, S. Nanda, J. Lian, 2017, Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7, Journal of Nuclear Materials 487, 373-379 [DOI: 10.1016/j.jnucmat.2017.02.032].

  3. G. S. Frankel, T. Li, and J. R. Scully, 2017, Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability, Journal of The Electrochemical Society, 164 (4) C180-C181 [DOI: 10.1149/2.1381704jes].

  4. G. Yao, Z. Zhang, J. Wang, 2017, Beta transmutations in apatites with ferric iron as an electron acceptor – implication for nuclear waste form development, Physical Chemistry Chemical Physics, 19, 25487-25497 [DOI: 10.1039/C7CP02846F].

  5. X. Lu, D. Schreiber, J. Neeway, J. Ryan, J. Du, 2017, Effects of Optical Dopants and Laser Wavelength on Atom Probe Tomography Analyses of Borosilicate Glasses”, Journal of American Ceramic Society, 100(10), 4801-4815 [DOI: 10.1111/jace.14987]

  6. A. Samin, C. D. Taylor, 2017, A first principles investigation of the oxygen adsorption on Zr(0001) surface using cluster expansions, Applied Surface Science 423, 1035–1044 [DOI: 10.1016/j.apsusc.2017.06.210].

  7. M. Ren, L. Deng, J. Du, 2017, Bulk, surface structures and properties of sodium borosilicate and boroaluminosilicate nuclear waste glasses from molecular dynamics simulations, Journal of Non-Crystalline Solids, 476, 87 [DOI: 10.1016/j.jnoncrysol.2017.09.030].

  8. Philip C. Roth, Hongzhang Shan, David Riegner, Nikolas Antolin, Sarat Sreepathi, Leonid Oliker, Samuel Williams, Shirley Moore, and Wolfgang Windl. 2017, Performance analysis and optimization of the RAMPAGE metal alloy potential generation software, in Proceedings of the 4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems (SEPS 2017). ACM, New York, NY, USA, 11-20. [DOI: 10.1145/3141865.3141868]

  9. S.M. Scott, W. Zhu, T. Yao, J.D. Vienna, R.C. Ewing, J. Lian, 2018, The Thermal Stability and Consolidation of Perovskite Variant Cs2SnCl6 Using Spark Plasma Sintering Journal of the American Ceramic Society, 101(5), 2060-2065 [DOI: 10.1111/jace.15372] Best Paper Award

  10. A. Samin, C. D. Taylor, 2017, A computational thermodynamic and kinetic study of chlorine binding to the Zr(0001) surface. Colloids and Surfaces A, 539, 92-100 [DOI: 10.1016/j.colsurfa.2017.11.075].

  11. J. Du, J.M. Rimsza, 2017, Atomistic computer simulations of water interactions and dissolution of inorganic glasses npj Materials Degradation, 1, 16 [DOI: 10.1038/s41529-017-0017-y

  12. A. Samin, C.D. Taylor, 2018, First-Principles Investigation of Surface Properties and Adsorption of Oxygen on Ni-22Cr and the Role of Molybdenum Corrosion Science, 134, 103-111.[DOI: 10.1016/j.corsci.2018.02.017]

  13. C.D. Taylor, P. Lu, J. Saal, G.S. Frankel, J.R. Scully, 2018, Integrated Computational Materials Engineering of Corrosion Resistant Alloys npj Materials Degradation, 2(1) 1-10. [DOI: 10.1038/s41529-018-0027-4

  14. Z. Zhang, A. Heath, K.T. Valsaraj, W.L. Ebert, T. Yao, J. Lian, J. Wang, 2018, Mechanism of iodine release from iodoapatite in aqueous solution RSC advances, 8, 3951-3957 [DOI: 10.1039/C7RA11049A]

  15. M. Collin, M. Fournier, , T. Charpentier, M. Moskura, J. Deng, R. Ren, J. Du, S. Gin, 2018, The structure of ISG glass and the properties of its passivating layer formed in neutral pH conditions npj Materials Degradation, 2.1, 1-12. [DOI: 10.1038/s41529-017-0025-y

  16. L. Deng, J. Du, 2018, Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations The Journal of Chemical Physics, 148(2), p.024504. [DOI: 10.1063/1.5007083]

  17. Scully, J.R., 2018, Future Frontiers in Corrosion Science and Engineering, Part I Corrosion, 74, 3-4 [DOI: 10.5006/2734]

  18. W. Zhu, G. Xin, Y. Wang, X. Min, T. Yao, W. Xu, M. Fang, S. Shi, J. Shi, J. Lian, 2018, "Tunable optical properties and stability of lead free all inorganic perovskites (Cs2SnIxCl6-x)" Journal of Materials Chemistry A, 6, 2577-2584. [DOI: 10.1039/C7TA10040J

  19. Lu, X; Deng, L.; Du, J., 2018, Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations, Journal of Non-Crystalline Solids, 491, 141-150 (2018). [DOI: 10.1016/j.jnoncrysol.2018.04.013]

  20. Collin, M.; Fournier, M.; Charpentier, T.; Moskura, M.; Gin, S., 2018, Impact of Alkali on the passivation of silicate glass? npj Materials Degradation 2(1), 1-10. [DOI: 10.1038/s41529-018-0036-3]

  21. Gin, S.; Collin, M.; Jollivet, P.; Fournier, M.; Minet, Y.; Dupuy, L.; Mahadevan, T.; Kerisit, S.; Du, J. (2018), Dynamics of self-reorganization explains passivation of silicate glasses Nature Communications, 9, 2169. [DOI: 10.1038/s41467-018-04511-2]

  22. Frankel, G.S.; Vienna, J.D.; Lian, J; Scully, J.R.; Gin, S.; Ryan, J.V.; Kim, S.H.; Windl, W.; Du, J., 2018, A Comparative Review of the Aqueous Corrosion of Glasses, Crystalline Ceramics, and Metals, npj Materials Degradation, 2(1), 1-17. [DOI: 10.1038/s41529-018-0037-2

  23. Lu, Pin; Saal, J.E.; Olson, G.B.; Li, T.; Swanson, O.J.; Frankel, G.S.; Gerald, A.Y.; Quiambao, K.F.;  Scully, J.R., 2018, Computational Materials Design of a Corrosion Resistant High Entropy Alloy for Harsh Environments, Scripta Materialia, 153, 19-22. [DOI: 10.1016/j.scriptamat.2018.04.040]

  24. Mahadevan, T.S.; Du, J., 2018, Evaluation Water Reactivity at Silica Surface Using Reactive Potentials. Journal of Physical Chemistry C 122(18) 9875-9885 [DOI: 10.1021/acs.jpcc.7b12653].

  25. Rimsza, J.M.; Du, J. 2018, Nanoporous silica gel structures and evolution from reactive force field-based molecular dynamics simulations npj Materials Degradation, 2(1), 1-10 [DOI: 10.1038/s41529-018-0039-0]

  26. Luo, J.; Smith, N.J.; Pantano, C.G.; Kim, S.H. 2018, Complex refractive index of silica, silicate, borosilicate, and boroaluminosilicate glasses – Analysis of glass network vibration modes with specular-reflection IR spectroscopy Journal of Non-Crystalline Solids, 494, 94 [DOI: 10.1016/j.jnoncrysol.2018.04.050

  27. Li, T.; Scully, J.R.; Frankel, G.S. 2018, Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability: Part II. A Model for Critical Pitting Temperature Journal of The Electrochemical Society, 165, 484 [DOI: 10.1149/2.0591809jes]

  28. Taylor, C.D., Li, S. and Samin, A.J., 2018, Oxidation versus salt-film formation: Competitive adsorption on aseries of metals from first-principles Electrochimica Acta, 269, 93-101. [DOI: 10.1016/j.electacta.2018.02.150]

  29. Samin, A.J.; Taylor, C.D. 2018, A one-dimensional time-dependent model for studying oxide film growth on metallic surfaces Journal of Applied Physics, 123, 245303 [DOI: 10.1063/1.5024211]

  30. Lu, X.; Deng, L.; Kerisit, S.; Du, J. 2018, Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses npj Materials Degradation, 2(1), 1-10. [DOI: 10.1038/s41529-018-0041-6]

  31. Schreibera, D.K.; Perea, D.E.; Ryan, J.V.; Evans, J.E.; Vienna, J.D. 2018, A method for site-specific and cryogenic specimen fabrication of liquid/solidinterfaces for atom probe tomography Ultramicroscopy, 194, 89 [DOI: 10.1016/j.ultramic.2018.07.010]

  32. Ngo, D.; Liu, H.; Sheth, N.; Lopez-Hallman, R.; Podraza, N.J.; Collin, M.; Gin, S.; Kim, S.H. 2018, Spectroscopic ellipsometry study of thickness and porosity of the alteration layer formed on international simple glass surface in aqueous corrosion conditions npj Materials Degradation, 2(1), 1-9. [DOI: 10.1038/s41529-018-0040-7]

  33. Liu, H.; Ngo, D.; Ren, M.; Du, J.; Kim, S.H. 2019, Effects of surface initial condition on aqueous corrosion of glass—A study with a model nuclear waste glass Journal of American Ceramic Society,102(4), 1652-1664. [DOI: 10.1111/jace.16016]

  34. Sheth, N.; Ngo, D.; Banerjee, J.; Zhou, Y.; Pantano, C.G.; Kim, S.H. 2018, Probing Hydrogen-Bonding Interactions of Water Molecules Adsorbed on Silica, Sodium Calcium Silicate, and Calcium Aluminosilicate Glasses Journal of Physical Chemistry C, 122.31, 17792-17801. [DOI: 10.1021/acs.jpcc.8b04233]

  35. Vienna, J.D.; Neeway, J.J.; Ryan, J.V.; Kerisit, S.N. 2018, Impacts of glass composition, pH, and temperature on glass forward dissolution rate npj Materials Degradation, 2(1), 1-12. [DOI: 10.1038/s41529-018-0042-5

  36. Collin, M.; Gin, S.; Dazas, B.; Mahadevan, T.; Du, J.; Bourg, I.C. 2018, Molecular Dynamics Simulations of Water Structure and Diffusion ina 1 nm Diameter Silica Nanopore as a Function of Surface Chargeand Alkali Metal Counterion Identity Journal of Physical Chemistry C, 122(31),17764-17776. [DOI: 10.1021/acs.jpcc.8b03902]

  37. Samin, A.J.; Taylor, C.D. 2018, A Combined Density Functional Theory and Monte Carlo Investigation of the Competitive Adsorption of Atomic Oxygen and Chlorine to the Ni (111) Surface Journal of The Electrochemical Society, 165, C302 [DOI: 10.1149/2.0031807jes]

  38. Quiambao, K.F.; McDonnell, S.J.; Schreiber, D.K.; Gerard, A.Y.; Freedy, K.M.; Lu, P.; Saal, J.E.; Frankel, G.S.; Scully, J.R. 2019, Passivation of a Corrosion Resistant High Entropy Alloy in Non-oxidizing Sulfate Solutions Acta Materialia 164, 362-376. [DOI: 10.1016/j.actamat.2018.10.026]

  39. Deng, L., Du, J., 2018, Development of boron oxide potentials for computer simulations of multicomponent oxide glasses. Journal of the American Ceramic Society 102(5) 2482-2505 [DOI: 10.1111/jace.16082]. 

  40. Lu, X., Ren, M., Lu, D., Benmore, C.J., Du, J. 2019, Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations, Journal of Nuclear Materials 515, 284-293 [DOI: 10.1016/j.jnucmat.2018.12.041]

  41. Lu, X., Deng, L., Gin, S., & Du, J., 2019, A Quantitative Structure-Property Relationship (QSPR) Analysis of ZrO2-Containing Soda-Lime Borosilicate Glasses. The Journal of Physical Chemistry B. 123 (6), pp 1412–1422 [DOI: 10.1021/acs.jpcb.8b11108].

  42. Vienna, J.D.; Crum, J.V. 2018, Non-linear effects of alumina concentration on Product Consistency Test response of waste glasses Journal of Nuclear Materials, 511, 396-405. [DOI: 10.1016/j.jnucmat.2018.09.040

  43. Li, T.; Scully, J.R.; Frankel, G.S. 2018, Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part III. A Unifying Set of Principal Parameters and Criteria for Pit Stabilization and Salt Film FormationJournal of The Electrochemical Society, 165, C762 [DOI: 10.1149/2.0251811jes

  44. Glover, M.H.C., Rafla, V., Bland, L., Scully, J.R., 2019, Progress in Development of Electrochemical Methods in Corrosion Science and Engineering, ASTM International, STP1609. [DOI: 10.1520/STP160920170247]

  45. Li, T., Swanson, O.J., Frankel, G.S., Gerard, A.Y., Lu, P., Saal, J.E., Scully, J.R., 2019, Localized corrosion behavior of a single-phase non-equimolar high entropy alloy, Electrochimica Acta, 306, 71-84 [DOI: 10.1016/j.electacta.2019.03.104]

  46. Lutton-Cwalina, K., Demarest, C.R., Gerard, A.Y., Scully, J.R., 2019, Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion, Current Opinion in Solid State and Materials Science, 23(3), 129-141 [DOI: 10.1016/j.cossms.2019.03.002]

  47. Scully, J.R., 2019, Future Frontiers in Corrosion Science and Engineering, Part II: Managing the Many Stages of Corrosion, Corrosion, 75, 123-125. [DOI: 10.5006/3132]

  48. Li, T., Scully, J.R., Frankel, G.S., 2019, Localized Corrosion: Passive Film Breakdown vs. Pit Growth Stability: Part IV. The Role of Salt Film in Pit Growth: A Mathematical Framework, Journal of The Electrochemical Society, 166, C115-C124 [DOI: 10.1149/2.0211906jes]

  49. Samin, A.J., Taylor, C.D., 2018, An Analysis of Limiting Cases for the Metal Oxide Film Growth Kinetics Using an Oxygen Defects Model Accounting for Transport and Interfacial Reactions. Journal of Non-Equilibrium Thermodynamics, 43(4), 317-326. [DOI: 10.1515/jnet-2018-0018]

  50. Zhu, W., Xin, G., Scott, S.M., Xu, W., Yao, T., Gong, B., Wang, Y., Li, M., Lian, J., 2019, Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs2SnI6, npj Materials Degradation 3(1), 1-7 [DOI: 0.1038/s41529-019-0068-3]

  51. Zhu, W., Yao, T., Shen, J., Xu., W., Gong, B., Wang, Y., Lian, J., 2019, In situ Investigation of Water Interaction with Lead-Free All Inorganic Perovskite (Cs2SnIxCl6−x), Journal of Physical Chemistry B 123, 2019, 9575–9581 [DOI: 10.1021/acs.jpcc.9b00720].

  52. Zhang, Z., Ebert, W.L., Yao, T., Lian, J., Valsaraj, K.T., Wang, J., 2019, Chemical durability of iodoapatite in aqueous solution. ACS Earth and Space Chemistry. 3(3), 452-462 [DOI: 10.1021/acsearthspacechem.8b00162]

  53. Collin, M., Gin, S., Jollivet, P., Dupuy, L., Dauvois, V., Duffours, L., 2019, ToF-SIMS depth profiling of altered glass. npj Materials Degradation 3(1), 1-10 [doi: 10.1038/s41529-019-0076-3]

  54. Lu, X., Sun, R., Huang L., Ryan, J.V., Vienna, J.D., Du, J., 2019, Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: Toward development of high crack resistant glasses for nuclear waste disposal, Journal of Non-Crystalline Solids, 515, 88-97 [10.1016/j.jnoncrysol.2019.04.009]

  55. Ke, H. and Taylor, C., 2019. Density Functional Theory: An Essential Partner in the Integrated Computational Materials Engineering Approach to Corrosion. Corrosion, 75(7), 708-726. [DOI: 10.5006/3050]

  56. Mahadevan, T. S., Sun, W., & Du, J. (2019). Development of Water Reactive Potentials for Sodium Silicate Glasses. The Journal of Physical Chemistry B. 123(20), 4452-4461 [DOI: 10.1021/acs.jpcb.9b02216]

  57. Ngo, D., Liu, H., Kaya, H., Chen, Z., & Kim, S. H., 2019, Dissolution of silica component of glass network at early stage of corrosion in initially silica saturated solution. Journal of the American Ceramic Society 102(11), 6649-6657. [DOI:]

  58. Weirich, T. D., Srinivasan, J., Taylor, J. M., Melia, M. A., Noell, P. J., Bryan, C. R., .Frankel, G. S., Locke, J. S., Schindelholz, E. J., 2019. Humidity Effects on Pitting of Ground Stainless Steel Exposed to Sea Salt Particles. Journal of The Electrochemical Society, 166(11), C3477-C3487. [DOI: 10.1149/2.0551911jes]

  59. Zhang, Z., Gustin, L., Xie, W., Lian, J., Valsaraj, K. T., & Wang, J. (2019). Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments. Journal of Nuclear Materials, 525, 161-170. [DOI: 10.1016/j.jnucmat.2019.07.034]

  60. Jamison, J. S., May, B. J., Deitz, J. I., Chien, S. C., McComb, D. W., Grassman, T. J., Windl, W., Myers, R. C. (2019). Ferromagnetic Epitaxial μ-Fe2O3 on β-Ga2O3: A New Monoclinic form of Fe2O3. Crystal Growth & Design 19(8), 4205-4211 [DOI: 10.1021/acs.cgd.9b00029]

  61. Oberdorfer, C., Windl, W. (2019), Bond-order bond energy model for alloys. Acta Materialia 179, 406-413 [DOI: 10.1016/j.actamat.2019.08.048]

  62. Shao, D., Zhu, W., Xin, G., Lian, J., & Sawyer, S., 2019, Inorganic vacancy-ordered perovskite Cs2SnCl6: Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Applied Physics Letters, 15(12), 121106 [DOI: 10.1063/1.5123226]

  63. Kaya, H., Ngo, D., Gin, S., & Kim, S. H., 2020, Spectral changes in Si–O–Si stretching band of porous glass network upon ingress of water. Journal of Non-Crystalline Solids, 527, 119722 [DOI: 10.1016/j.jnoncrysol.2019.119722]

  64. Lu, X., & Du, J., 2020, Quantitative structure-property relationship (QSPR) analysis of calcium aluminosilicate glasses based on molecular dynamics simulations. Journal of Non-Crystalline Solids, 530, 119772. [DOI: 10.1016/j.jnoncrysol.2019.119772]

  65. Ngo, D., Liu, H., Chen, Z., Kaya, H., Zimudzi, T.J., Gin, S., Mahadevan, T., Du, J. and Kim, S.H., 2020, Hydrogen bonding interactions of H 2 O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. npj Materials Degradation, 4.1, 1-14. [DOI:10.1038/s41529-019-0105-2]

  66. Lei, P., Yao, T., Gong, B., Zhu, W., Ran, G., & Lian, J., Spark plasma sintering-densified vanadinite apatite-based chlorine waste forms with high thermal stability and chlorine confinement. Journal of Nuclear Materials, 528 (2020): 151857 [DOI: 10.1016/j.jnucmat.2019.151857]

  67. Lu, P., Saal, J.E., Olson, G.B., Li, T., Sahu, S., Swanson, O.J., Frankel, G.S., Gerard, A.Y. and Scully, J.R., Computational design and initial corrosion assessment of a series of non-equimolar high entropy alloys. Scripta Materialia, 172 (2019): 12-16. [DOI: 10.1016/j.scriptamat.2019.07.003]

  68. Ghosh, D.B., Karki, B.B. and Wang, J., Utilization of Artificial Neural Network to explore the compositional space of hollandite-structured materials for radionuclide Cs incorporation. Journal of Nuclear Materials, 530 (2020): 151957. [DOI: 10.1016/j.jnucmat.2019.151957]

  69. Guo, X., Gin, S., Lei, P., Yao, T., Liu, H., Schreiber, D.K., Ngo, D., Viswanathan, G., Li, T., Kim, S.H., Vienna, J.D., Ryan, J.V., Du, J., Lian, J., Frankel, G.S., Self-accelerated corrosion of nuclear waste forms at material interfaces. Nature Materials 19 (2020) 310-316. [DOI: 10.1038/s41563-019-0579-x]

  70. Thiruvilla, M.S. and Du, J., Hydration and Reaction Mechanisms on Sodium Silicate Glass Surfaces from Molecular Dynamics Simulations with Reactive Force Fields. Journal of the American Ceramic Society. (2020) [DOI: 10.1111/jace.17059]

  71. Strachan, D., Crum, J.V., Bovaird, C.C., Windisch, C., Zumhoff, M., McIntosh, B., Guo, X. and Frankel, G.S., 2020, Epsilon metal: A waste form for noble metals from used nuclear fuel. Journal of Nuclear Materials, 532, 152040 [DOI: 10.1016/j.jnucmat.2020.152040]

  72. Gin, S., Mir, A.H., Jan, A., Delaye, J.M., Chauvet, E., De Puydt, Y., Gourgiotis, A. and Kerisit, S.N., 2020. A General Mechanism for Gel Layer Formation on Borosilicate Glass under Aqueous Corrosion. The Journal of Physical Chemistry C. 124(9), 5132-5144 [DOI: 10.1021/acs.jpcc.9b10491]

  73. Shao, D., Zhu, W., Xin, G., Liu, X., Wang, T., Shi, S., Lian, J. and Sawyer, S., 2020. A high performance UV–visible dual-band photodetector based on an inorganic Cs2SnI6 perovskite/ZnO heterojunction structure. Journal of Materials Chemistry C. 8, 1819-1825 [DOI: 10.1039/c9tc05940g]

  74. Liu, H., Hahn, S.H., Ren, M., Thiruvillamalai, M., Gross, T.M., Du, J., van Duin, A.C. and Kim, S.H., Searching for correlations between vibrational spectral features and structural parameters of silicate glass network. Journal of the American Ceramic Society 103(6), 3575-3589 [DOI: 10.1111/jace.17036].

  75. Kerisit, S. and Du, J., 2019. Monte Carlo simulation of borosilicate glass dissolution using molecular dynamics-generated glass structures. Journal of Non-Crystalline Solids, 522, p.119601. [DOI:10.1016/j.jnoncrysol.2019.119601]

  76. Jan, A., Delaye, J.M., Gin, S. and Kerisit, S., 2019. Monte Carlo simulation of the corrosion of irradiated simplified nuclear waste glasses. Journal of Non-Crystalline Solids, 519, 119449. [DOI: 10.1016/j.jnoncrysol.2019.05.025]

  77. Li, T., Scully, J.R. and Frankel, G.S., 2019, Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability: Part V. Validation of a New Framework for Pit Growth Stability Using One-Dimensional Artificial Pit Electrodes. Journal of The Electrochemical Society, 166(11), C3341-C3354. [DOI: 10.1149/2.0431911jes]

  78. Perea, D.E., Schreiber, D.K., Ryan, J.V., Wirth, M.G., Deng, L., Lu, X., Du, J., Vienna, J.D.,Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass, npj Materials Degradation, 4, 8 (2020) [DOI: 10.1038/s41529-020-0110-5]. 

  79. Gin, S., Wang, M., Bisbrouck, N., Taron, M., Lu, X., Deng, L., Angeli, F., Charpentier, T., Delaye, J.M., Du, J. and Bauchy, M., 2020. Can a simple topological-constraints-based model predict the initial dissolution rate of borosilicate and aluminosilicate glasses?. npj Materials Degradation, 4(1), pp.1-10 [DOI: 10.1038/s41529-020-0111-4].

  80. Liu, H., Zhang, T., Krishnan, N.A., Smedskjaer, M.M., Ryan, J.V., Gin, S. and Bauchy, M., 2019. Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning. npj Materials Degradation, 3(1), pp.1-12. [DOI: 10.1038/s41529-019-0094-1]

  81. Guo, X.,Gin, S., Liu, H., Ngo, D., Luo, J., Kim, S.H., Mohanty, C., Vienna, J.D., Ryan. J.V., Frankel, G.S., 2020, Near-field corrosion interactions between glass and corrosion resistant alloys, npj Materials Degradation 4(1), 1-15 [DOI: 10.1038/s41529-020-0114-1]

  82. Gerard, A.Y., Cwalina, K.L., Lucente, A., Frankel, G.S., Scully, J.R., 2020, Progress in Understanding the Origins of Excellent Corrosion Resistance in Metallic Alloys: From Binary Polycrystalline Alloys to Metallic Glasses and High Entropy Alloys, Corrosion, 76(5): 485-499. [DOI: 10.5006/3513]

  83. Li, X., Han, J., Lu, P., Saal, J.E., Olson, G.B., Frankel, G.S., Scully, J.R. and Ogle, K., 2020. Communication—Dissolution and Passivation of a Ni-Cr-Fe-Ru-Mo-W High Entropy Alloy by Elementally Resolved Electrochemistry. Journal of The Electrochemical Society, 167(6), p.061505. . [DOI: 10.1149/ 1945-7111/ab7f86]

  84. Scully, J.R. and Balachandran, P.V., 2019. Future Frontiers in Corrosion Science and Engineering, Part III: The Next “Leap Ahead” in Corrosion Control May Be Enabled by Data Analytics and Artificial Intelligence. Corrosion, 75(12), pp.1395-1397. [DOI:]

  85. Mir, A.H.; Jan, A.; Delaye, J.M.; Donnelly, S.; Hinks, J.; Gin, S. 2020, Effect of decades of corrosion on the microstructure of altered glasses and their radiation stability npj Materials Degradation, 4 [DOI: 10.1038/s41529-020-0115-0]

  86. Sheth, N. Hahn, S.H., Ngo, D., Howzen, A., Bermejo, R., Duin, A.C.T.V, Mauro, J.C., Pantano, C.G., Kim, S.H., 2020, Influence of acid leaching surface treatment on indentation cracking of soda lime silicate glass, Journal of Non-Crystaline Solid, 543(1), 120144 [DOI: 10.1016/j.jnoncrysol.2020.120144]

  87. Ngo, D.; Kim, S.H., Aqueous Corrosion of GlassThe World Scientific Reference of Amorphous Materials - Structure, Properties, Modeling and Main Applications, 2, 163-196, (2020). [DOI: 10.1142/11697]

  88. Wang, J., 2020, Thermodynamic Equilibrium and Kinetic Fundamentals of Oxide Dissolution in Aqueous Solution, Journal of Materials Research, 35, 898-921 [DOI: 10.1557/jmr.2020.81]

  89. Guo, X., Wang, Y., Yao, T., Mohanty, C., Lian, J., Frankel, G.S., 2020, Corrosion Interactions between Stainless Steel and Lead Vanado-Iodoapatite Nuclear Waste Form Part I, npj Materials Degradation, 4(1) 1-12 [DOI: 10.1038/s41529-020-0117-y].

  90. Yao, T., Guo, X., Lei, P., Wang, Y., Frankel, G.S., Lian, J., 2020, Corrosion Interactions between Stainless Steel and Lead Vanado-Iodoapatite Nuclear Waste Form Part II, npj Materials Degradation, 4 [DOI: 10.1038/s41529-020-0119-9]

  91. Wang, Y., Yao, T., Xi, F., Lei, P., Guo, X., He, L., Frankel, G.S. and Lian, J., 2020. Degradation Mechanism of Lead-Vanado-iodoapatite in NaCl Solution. Corrosion Science, 172, 108720. [DOI: 10.1016/j.corsci.2020.108720]

  92. Yang, K., Zhu, W., Scott, S., Wang, Y., Wang, J., Riley, B.J., Vienn, J. and Lian, J., 2020. Immobilization of Cesium and Iodine into Cs3Bi2I9 Perovskite-silica Composites and Core-shell Waste Forms with High Waste Loadings and Chemical Durability. Journal of Hazardous Materials, p.123279. [DOI: 10.1016/j.jhazmat.2020.123279]

  93. Jun, J., Li, T., Frankel, G.S. and Sridhar, N., 2020. Corrosion and repassivation of Super 13Cr stainless steel in artificial 1D pit electrodes at elevated temperature. Corrosion Science, p.108754. [DOI: 10.1016/j.corsci.2020.108754]

  94. Li, T., Perea, D.E., Schreiber, D.K., Wirth, M.G., Orren, G.J. and Frankel, G.S., 2020. Cryo-Based Structural Characterization and Growth Model of Salt Film on Metal. Corrosion Science, p.108812. [DOI: 10.1016/j.corsci.2020.108812]

  95. Guo, X., Gin, S., Lei, P., Yao, T., Liu, H., Schreiber, D.K., Ngo, D., Viswanathan, G., Li, T., Kim, S.H. and Vienna, J.D., 2020. Reply to: How much does corrosion of nuclear waste matrices matter. Nature Materials, [DOI: 10.1038/s41563-020-0742-4].

  96. Sahu, S., Swanson, O.J., Li, T., Gerard, A.Y., Scully, J.R. and Frankel, G.S., 2020. Localized Corrosion Behavior of Non-Equiatomic NiFeCrMnCo Multi-Principal Element Alloys. Electrochimica Acta, p.136749. [DOI: 10.1016/j.electacta.2020.136749]

  97. Ke, H., Li, T., Lu, P., Frankel, G.S. and Taylor, C.D., 2020. First-Principles Modeling of the Repassivation of Corrosion Resistant Alloys: Part I. O and Cl Adsorption Energy. Journal of The Electrochemical Society, 167(11), p.111502. [DOI: 10.1149/1945-7111/aba44e]

  98. Ke, H., Li, T., Lu, P., Frankel, G.S. and Taylor, C.D., 2020. First-Principles Modeling of the Repassivation of Corrosion Resistant Alloys: Part II. Surface Adsorption Isotherms for Alloys and the Chloride Susceptibility Index. Journal of The Electrochemical Society, 167(11), p.111501. [DOI: 10.1149/1945-7111/aba3fe]

  99. Gerard, A.Y., Han, J., McDonnell, S.J., Ogle, K., Kautz, E.J., Schreiber, D.K., Lu, P., Saal, J.E., Frankel, G.S. and Scully, J.R., 2020. Aqueous Passivation of Multi-Principal Element Alloy Ni38Fe20Cr22Mn10Co10: Unexpected High Cr Enrichment within the Passive Film. Acta Materialia, 198, 121 [DOI:10.1016/j.actamat.2020.07.024]

  100. Scully, J.R., Inman, S.B., Gerard, A.Y., Taylor, C.D., Windl, W., Schreiber, D.K., Lu, P., Saal, J.E. and Frankel, G.S., 2020. Controlling the corrosion resistance of multi-principal element alloys. Scripta Materialia, 188, 96-101.[DOI: 10.1016/j.scriptamat.2020.06.065]

  101. Reiser, J.T., Lu, X., Parruzot, B., Liu, H., Subramani, T., Kaya, H., Kissinger, R.M., Crum, J.V., Ryan, J.V., Navrotsky, A. and Kim, S.H., 2020, Effects of Al: Si and (Al+ Na): Si Ratios on the Properties of the International Simple Glass, Part I: Physical Properties. Journal of the American Ceramic Society [DOI: 10.1111/jace.17449

  102. Lu, X., Reiser, J.T., Parruzot, B., Deng, L., Gussev, I.M., Neuefeind, J.C., Graham, T.R., Liu, H., Ryan, J.V., Kim, S.H. and Washton, N., 2020, Effects of Al: Si and (Al+ Na): Si Ratios on the Properties of the International Simple Glass, Part II: Structure. Journal of the American Ceramic Society. [DOI: 10.1111/jace.17447]

  103. Mahadevan, T., Du, J., 2020. Atomic and microstructure features of nanoporous aluminosilicate glasses from reactive molecular dynamics simulations. Journal of the American Ceramic Society [DOI: 10.1111/jace.17465]

  104. Niu, C., Rao, Y., Windl, W. and Ghazisaeidi, M., 2019. Multi-cell Monte Carlo method for phase prediction. npj Computational Materials, 5(1), pp.1-5. [DOI: 10.1038/s41524-019-0259-z]

  105. Tuheen, M.I., Deng, L., Du, J., 2020. A Comparative Study of the Effectiveness of Empirical Potentials for Molecular Dynamics Simulations of Borosilicate Glasses, Journal of the American Ceramic Society. Accepted.

  106. Ke, H. and Taylor, C.D., 2020. DFT-Based Calculation of Dissolution Activation Energy and Kinetics of Ni-Cr Alloys. Journal of the Electrochemical Society, 167, 131508 [DOI: 10.1149/1945-7111/abbbbd]

  107. Ke, H., Frankel, G.S., Taylor, C.D., 2020. Application of the Chloride Susceptibility Index to study the effects of Ni, Cr, Mn and Mo on the repassivation of stainless steels, Journal of the Electrochemical Society, 167, 131510. [DOI: 10.1149/1945-7111/abbce2]

  108. Kaya, H., Ngo, D., Smith, N.J., Gin, S., Kim, S.H., 2020. Network structure in alteration layer of boroaluminosilicate glass formed by aqueous corrosion, Journal of Non-Crystalline Solids [DOI: 10.1016/j.jnoncrysol.2020.120494]

  109. Lu, X., Deng, L., Du, J., Vienna, J.D., 2020. Predicting boron coordination in multicomponent borate and borosilicate
    glasses using analytical models and machine learning, Journal of Non-Crystalline Solids [DOI: 10.1016/j.jnoncrysol.2020.120490]  

  110. Taron, M., Delaye, J.M. and Gin, S., 2020. A classical molecular dynamics simulation method for the formation of “dry” gels from boro-aluminosilicate glass structures. Journal of Non-Crystalline Solids, p.120513. [DOI: 10.1016/j.jnoncrysol.2020.120513

  111. Guo, X., Gin, S., Frankel, G.S., 2020. Review of corrosion interactions between different materials relevant to disposal of high-level nuclear waste, npj Materials Degradation, 4, 34. [DOI: 10.1038/s41529-020-00140-7]

  112. Wang, K., Han, J., Gerard, A.Y., Scully, J.R., Zhou, B.C., 2020. Potential-pH diagrams considering complex oxide solution phases for understanding aqueous corrosion of multi-principal element alloys, npj Materials Degradation, 4, 35. [DOI: 10.1038/s41529-020-00141-6]

  113. Wang, Y., Zhu, W., Yao, T., Guo, X., Frankel, G.S., Lian, J., Nanoscale TiO2 coating improves water stability of Cs2SnCl6, MRS Communications, 2020, Accepted. [DOI: 10.1557/mrc.2020.84]

  114. Chien, S.C. and Windl, W., 2020. Bond Synergy Model for Bond Energies in Alloy Oxides. Journal of the Electrochemical Society, 167, 141511 [DOI: 10.1149/1945-7111/ abc6c7]

  115. Kerist, S. et al., 2020. Patchy Particle Model of Hydrated Amorphous Silica Journal of Non-Crystalline Solids, Journal of Non-Crystaline Solids, Accepted. [DOI: 10.1016/j.jnoncrysol.2020.120555

  116. Kautz, E., Sten L.V., Perea, D., Gerard, A.Y., Han, J., Scully, J.R., Saal, J.E., Schreiber, D.K., 2020. Element redistribution during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy, Scripta Materialia, Accepted. [DOI: 10.1016/j.scriptamat.2020.10.051